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ABSTRACT: Mathematics is at the heart of scientific knowledge. Besides, many findings and discoveries in all fields 
are based on data, models and computer simulations of real processes. The tool, MATLAB, is useful for implementing  
the necessary mathematical procedures. It is an important trend in modern teaching to bring all the se aspects of the 
learning process together. So, a lot of interesting projects arise. Teachers and students are especially motivated to solve 
the corresponding problems and to present their results. This paper is a contribution in this direction. The dynamics of 
separate or interacting populations are studied. Further, the spreading of diseases is discussed. Simple, well-known 
models are used to interpret the mathematical results and to derive consequences. This paper contains many suggestions 
for further studies. 
 
 

 
 

MODELLING, SIMULATION AND MATHEMATICS 
 
Modelling is a powerful scientific tool producing knowledge about nature and techn ology. Generally, a m odel in 
science grasps a whole class of phenomena by introducing parameters. Adapting these parameters to concrete systems 
can be used to study the behaviour of a system and to compare it with the actual behaviour. The results can be easily 
reproduced. Changing these parameters shows the influence of the magnitude of these parameters and the stability of 
the system. Often, unwanted effects in the system can be overcome by external control. In addition, virtual systems can 
be considered, which do not exist but which could be created in the future. 
 
Modelling considerably saves costs. But there is a gap between models of systems and real systems. Therefore, one 
must be caut ious about drawing hasty conclusions. A strict validation of a model’s results is necessary to avoid 
unpleasant surprises. A comparison with real system results should be included. 
 
Modelling is a control process. Starting with very simple models that can b e refined step by step, the degree of 
coincidence with real systems increases more and more. So a hierarchy of models arises, with sophisticated models at 
the top. Sometimes, competing models with a similar level of complexity are developed. At the beginning, often 
descriptive models are used for the system behaviour without giving causes for the behaviour. Later, causal models 
replace them, based on some theory about the system. In this process students learn about the value and hierarchy of 
models. 
 
Complex systems are descri bed by mathematical models consisting of a sy stem of equ ations and conditions. For 
processes, there are mostly systems of differential equations and initial conditions. Since the mathematical model does 
not contain specific properties limited to the field of application any more, it often has many applications in quite 
different fields. Beside high precision, it is the essential power of mathematics to reveal common qualitative properties 
of phenomena in various fields. It is remarkable that some of the considered population models lead to similar systems 
of differential equations and to similar qualitative behaviour as certain oscillator systems in engineering (see e.g. [4]). 
For complex systems, computer software is needed to simulate the model behaviour. The matrix laboratory, MATLAB, 
is a suitable tool for symbolic or numerical solutions and for graphical representations. 
 
Nature is very complex. Sometimes, it seems to be rather static, but in the background, highly dynamical processes run. 
Fortunately, they are often balanced (stable steady-states). In other cases, the processes are periodic. Nevertheless, the 
influences of outer space, inner processes of the Earth, of human beings and other populations can end in dangerous 
situations or catastrophes. So, it is v ery important to model certain environments on Earth predicting the future 
development or weighing and rating possible alternatives. Students should gain knowledge about the interplay of 
modelling, mathematics and software tools in investigating biological or biomedical systems. 
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Starting with different kinds of growth processes and their m odelling (for example, exponential or logistic growth) 
models for one or more interacting species can have several steady-states. Their meaning and stability is discussed. 
Models for interacting populations are considered (predator-prey models, competition models). Further, infection 
models (SI, SIS, and SIR) are outlined and studied. 
 
SINGLE SPECIES 
 
If the size of a population is large enough, it can be m odelled by a continuous function varying in time t. 
Often, it can be assumed that the velocity of change in a population is proportional to its size: 

( ) 0x x t= ≥

 
 ( ) ( )x g x a x x′ = = ⋅ . 
 
Here a(x) is the net reproduction rate (per capita) of the population (species or subspecies). The initial value 0(0)x x=  
must be known to determine x(t) uniquely. This approach is flexible enough to consider also declining resources (food 
or space) for increasing populations. Mathematical investigation shows, that the steady-states sx , satisfying ( ) 0sg x = , 
are stable for  and unstable for , at least lo cally. If th e rate a does not depend on the size of 
population x, then natural growth arises: 

( ) 0sg x′ < ( ) 0sg x′ >

 
 0 0( ) ( ), 0, (0) 0 ( ) a tx t a x t a x x x t x e ⋅′ = ⋅ > = > ⇒ = ⋅ .  (1) 
 
The population number x increases exponentially in time. Th is is on ly the case, if the resources are unbounded. 
Nevertheless, populations often grow in such a way in short periods of development. 
 
For a < 0 the given solution is also true. But, then, an exponential decline is obtained. A population without any food 
resources would follow this law. But here, one must recognise a gap between model and reality. While x(t) tends to 0 
without reaching 0 the population would die out after a finite time. 
 
A simple idea introduced by Verhulst in the 19th Century is to model limited resources by logistic growth: 
 

 ( )2
0( ) ( ) ( ) ( ) ( ), 0, 0, (0) 0,a ax t a x t b x t C x t x t a b x x C

C b
′ = ⋅ − ⋅ = ⋅ − ⋅ > > = > = . (2) 

 
Here C measures the total capacity of the environment. A simple calculation shows that the population size is given by: 
 

 
( )
0 0

0 00

( )
( )1

a t

a ta t

C x e C xx t
x C x eC x e

⋅

− ⋅⋅

⋅ ⋅ ⋅
= =

+ − ⋅+ ⋅ −
. 

 
The limit of x is C as t tends to infinity. There are three cases. For 0x C=  the population is a constant C. If 0x C> , the 
initial population is t oo large fo r the resources: x(t) monotonically decreases to C. If 0x C< , the resources allow 
bounded growth, x(t) monotonically increases to C. The curve has the well-known sigmoid form (see Figure 1). Starting 
with slow growth, the velocity increases to the maximum when halve of the capacity C is reached. Then, at the turning 
point of the curve, a growth drop happens and the growth becomes slower and slower. There are two steady-states, 
namely , which is unstable and not interesting, and 0sx = sx C= , which is stable and therefore attracting. 
 

 
Figure 1: Standardised logistic function. 

 
For a qualitative study, it is useful to introduce non-dimensional quantities. So, a whole class of models is standardised 
by a model where units are of no importance and the number of parameters is reduced. A disadvantage is that the 
solution ranges need not be realistic. Here we introduce: 
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( ), ( ) ( ) , xb x tT a t X T x t X
a C C

= ⋅ = ⋅ = = . 

 
Then, we obtain: 
 

 0

0 0

(1 ) , ( )
(1 ) T

XdXX X X X X T
dT X X e−

′ = = − ⋅ = =
+ − ⋅

. 

 
Despite the simplicity of the logistic approach it has some features which distinguish real populations. There are many 
possible ways to modify this approach; for example, generalised logistic growth, logistic growth with time delay or 
combined with the influence of predation of another population. Then time arguments are changed or certain terms are 
added in Equation (2) (see [3: p. 7-17]). 
 
INTERACTION OF TWO SPECIES 
 
The general model of one species can be extended to two or more species living in the same environment. Denoting the 
sizes of populations 1 and 2 by  and 1 1( ) 0x x t= ≥ 2 2 ( ) 0x x t= ≥ , respectively, the model equations are: 
 
 1 1 1 2 1 1 2 1 2 2 1 2 2 1 2 2( , ) ( , ) , ( , ) ( , )x g x x a x x x x g x x a x x x′ ′= = ⋅ = = ⋅

0

. 
 
Here  and  are the reproduction rates. The initial sizes are d enoted by 1 1 1 2( , )a a x x= 2 2 1 2( , )a a x x=

1 1(0)x x= and 2 (0) 20x x= . The steady-states 1sx  and 2sx  satisfy the equations: 
 
 1 1 2 2 1 2( , ) 0, ( , ) 0.g x x g x x= =  
 
It can be assumed that there is a so-called first integral 1 2( , )P x x K=  with a constant K, relating the population sizes to 
each other without containing the time t explicitly. Geometrically, it represents a family of trajectories or phase curves 
in the 1x - 2x  coordinate system, where 10 20( , )K P x x= is determined by the initial values. But the phases provide no 
information about the velocity of traversal. In reality, only those models are relevant where the phase curves and the 
steady states lie in the positive quadrant. 
 
A simple model again arises following the logistic approach. For affine linear expressions in ia ix  (i=1,2) were chosen: 
 
 1 1 1 1 1 2 1 2 2 2 2 2 1( ) , ( 2)x a b x c x x x a b x c x x′ ′= + ⋅ + ⋅ ⋅ = + ⋅ + ⋅ ⋅ . (3) 
 
This is the well-known model class of Lotka-Volterra. 
 
Steady-states can be on the axes (  or ) or positive solutions of the linear system: 1 0x = 2 0x =
 
 . 1 1 1 1 2 2 2 2 2 10, 0a b x c x a b x c x+ ⋅ + ⋅ = + ⋅ + ⋅ =
 
A unique solution exists if 1 2 1 2 0D b b c c= ⋅ − ⋅ ≠ , namely: 
 

 2 1 1 2 1 2 2 1
1 2,s s

a c a b a c a bx x
D D

⋅ − ⋅ ⋅ − ⋅
= = . 

 
Let the constants be arbitrary. First  is assumed. Then, there are two  separate populations without any 
interaction. If  and , then depending on the sign of  the two populations grow exponentially or vanish 
exponentially. For  and  (i=1,2) both populations grow logistically. Again, non-dimensional quantities can 
be introduced to simplify theoretical considerations. But the author will not elaborate this aspect in this discussion. 

1 2 0c c= =

1 0a ≠ 2 0a ≠ ia
0ia > 0ib <

 
Predator-Prey Model With Unbounded Capacity 
 
Now, two populations are considered where the first lives on food readily available in the environment, and the second 
lives on consuming the first without other growth limitations. So, there is a prey Population 1 and a predator  
Population 2. Intuitively, oscillations of the two populations are expected. If there are only a few predators, the prey will 
increase. Then, the predators, having enough food, reduce the number of prey and will themselves increase. But, if their 
number becomes too great, there is not enough prey as food. Hence, the predators are reduced, and so on. Some simple 
assumptions are made for modelling. Put 1 1 10, 0a bα= > =  and 2 2 20, 0a bα= − < = . Population 1 gr ows 
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exponentially, and Population 2 declines exponentially to die out, if there is no in teraction between them ( 1 2 0c c= = ). 
If the populations interact the number of meetings between prey and predators, as well as the number of sacrifices in the 
prey population should be proportional to both 1x  and 2x . These meetings are on the whole losses for prey (loss rate 

1 1 0c γ= − < ) and profits for predators (profit rate 2 2 0c γ= > ). Hence, we obtain: 
 
 1 1 1 1 1 2 2 2 2 2 1 2,x x x x x x x xα γ α γ′ ′= ⋅ − ⋅ ⋅ = − ⋅ + ⋅ ⋅ . (3a) 
 
This classical case is rather unrealistic but has some important consequences, which can be observed in real populations 
(for example, food fishes and sharks, rabbits and foxes or lynxes, beetles and scale insects). Therefore, it is the starting 
point for more sophisticated predator-prey models. 
 
The solutions must be calculated numerically, but a fi rst integral relating the populations to each o ther can be given 
analytically: 
 
 . 2 1

1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 10 20( , ) ln ln ln ( , )P x x x x x x x x x x K P x xα αγ γ γ α γ α= ⋅ + ⋅ − = ⋅ − ⋅ + ⋅ − ⋅ = =
 
Now, the parameters are fixed. Geometrically, this is a family of bounded and closed phase curves in the first quadrant 
( ) showing that the process is periodic. The curves are involved with each othe r for decreasing K. The 
direction of time flow is anti-clockwise (see Figure 2). 

1 20, 0x x> >

 
There are two steady-states, namely the unstable saddle point (0, 0) and the stable centre point: 
 

 ( ) 2 1
1 2

2 1

, ,s sx x α α
γ γ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

 
The latter poin t is a deg enerated phase curv e with 1 2 min 1 2( , ) ( , )s sP x x P x x=  and lies in the centre of the whole family, 
marking also the m ean values in time. Both populations coexist. The tim e functions of population numbers oscillate 
periodically with a certain shift to each other. The predator population follows the prey population. Important characteristics 
are the time period and th e extremes ,minix  and  (i=1, 2), which determine also the amplitudes of oscillation. The 
parameters influence the phase shape and the time period. This correlation can be investigated by experiment. 

,maxix

 
Figure 2 shows also a weakness of the modelling process: if it is running on a phase curve near the axes, then small 
perturbations can shift it to other curves with quite different amplitudes. 
 

 
Figure 2: Phase portrait of predator-prey model with unbounded capacity. 

 
Predator-Prey Model With Bounded Capacity 
 
By including additionally the logistic terms 0i ib β= − <  (i=1, 2), we obtain: 
 

2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2,x x x x x x x x xα β γ α β γ′ ′ x= ⋅ − ⋅ − ⋅ ⋅ = − ⋅ − ⋅ + ⋅ ⋅ . 

 
So, each population is assumed to have a limited capacity. The stable steady-state: 
 

 1 2 2 1 1 2 2 1
1 2

1 2 1 2 1 2 1 2

( , ) ,s s sP x x α β α γ α γ α β
β β γ γ β β γ γ

⎛ ⎞⋅ + ⋅ ⋅ − ⋅
= = ⎜ ⎟⋅ + ⋅ ⋅ + ⋅⎝ ⎠

 

 
lies in the positive quadrant for 1 2 2 1α γ α β⋅ > ⋅ . The stability can be shown by the Lyapunov function: 
 

1 2 2 1 1 1 1 2 2 2( , ) ( ln ) ( ln )s sL x x x x x x x xγ γ= ⋅ − ⋅ + ⋅ − ⋅ , 
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which defines the distance of points from the steady state sP . The phases are spirals in the positive quadrant tending 
to sP . The population sizes 1 1( )x x t=  and 2 2 ( )x x t= oscillate in a  damped manner around t he steady states 1sx  and 

2sx , respectively. Sooner or later, a constant mixture of the two populations appears. 
 
Model for Two Competing Populations 
 
Now, assume logistic growth of two populations and a dditionally losses by  competition for com mon food or space 
resources in the environment. Put: 
 
 0, 0, 0 ( 1, 2)i i i i i ia b c iα β γ= > = − < = − < =  
 
in the general Lotka-Volterra model (3) to obtain the equations: 
 
 2

1 1 1 1 1 1 1 2 2 2 2 2 2 2 1, 2
2x x x x x x x x xα β γ α β γ′ ′ x= ⋅ − ⋅ − ⋅ ⋅ = ⋅ − ⋅ − ⋅ ⋅ . (3b) 

 
Under the assumption 1 2 1 2 0D β β γ γ= ⋅ − ⋅ ≠ , there are four steady states, namely: 
 

 2 1 1 2 2 1 2 1 1
1 2

2 1

(0,0), 0, , ,0 , ( , ) ,s s sP x x
D D

2α α α β α γ α β α γ
β β

⎛ ⎞ ⎛ ⎞ ⋅ − ⋅ ⋅ − ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

 
The first three are on the axes. The fourth sP  is of special interest. The product 1 2β β⋅  is a measure of inhibition, while 
the product 1 2γ γ⋅  is a measure of competition. For D > 0 inhibition dominates. An analysis shows that the point sP  is a 
nodal sink. Therefore, the two populations coexist peacefully tending to a fi xed proportion. For D < 0 competition is 
dominant. Then sP  is an unstable saddle point, whereas the other two nonzero steady states are stable nodal sinks. A 
separatrix divides the positive quadrant into two regions, each containing phases tending t o the nearest sink. The 
populations cannot coexist. One population dies out, namely the population with the worst initial conditions. For theory 
and examples see Edwards et al [2: p. 544 f.]. 
 
Models for More Than Two Populations 
 
If there are several predator and prey populations, then they are reduced earlier or later to two populations, namely the 
strongest predators and the  most resistant prey. If there are several competing populations, in many cases, only one 
population survives after some time. In some special cases, more than one can coexist. But the chance that many such 
populations survive is low. The various cases can be investigated by computer experiments and compared with real 
situations. If enough data are available, some assertions can be made. At the e nd of this process, one can look for a 
mathematical theory giving conditions for a balanced coexistence of different species. This is a  true c hallenge for 
students to show power and creativity. 
 
SPREADING OF DISEASES 
 
It is assum ed that the num ber of pe ople (or a nimals) in a relatively closed c ommunity is a constant K > 0 at the 
beginning, and in the near future. One starts with the simplest model for the spreading of a single disease. 
 
SI Model 
 
The people are divided into two classes. There are healthy but susceptible individuals and infectious individuals, which 
cannot recover. Denoting the size of the first by 1 1( )x x t=  and the size of the second by 2 2 ( )x x t=  it is obtained: 
 
 1 2 1 2 1 20, 0, , 0x x x x K x x′ ′≥ ≥ + = + = . 
 
Obviously, the spreading velocity of disease is dependent on both, the number of infectious and the number of 
susceptible individuals. Simple proportionality is supposed, with an interaction factor c>0, the infection rate. Observing 
the constraints, the decrease rate of healthy people is as a consequence: 
 
 1 1 2 2 1, 2x c x x x c x x′ ′= − ⋅ ⋅ = ⋅ ⋅ . (4a) 
 
Therefore, 1x is known if 2x is determined. Replacing 1x  in the second equation gives: 
 
 2

2 2 2 2 2( ) 2 2x c K x x a x b x′ = ⋅ − ⋅ = ⋅ − ⋅ . 
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This is a logistic growth equation with capacity C = K  for 2x . Assuming 200 x K< < , the disease infects sooner or 
later all people of the community, independently of the initial conditions. This is typical of epidemics. 
 
SIS Model 
 
Again, there are two classes of susceptible individuals and infectious individuals. Thus, the constraints of the SI model 
are valid too. But more realistically, it is now supposed that ill people can recover. Introducing, apart from , a rate 
of recovery d>0, the equations considered are: 

0c >

 
 1 1 2 2 2 1 2, 2x c x x d x x c x x d x′ ′= − ⋅ ⋅ + ⋅ = ⋅ ⋅ − ⋅ . (4b) 
 
Replacing 1x  in the second equation supplies: 
 
 2

2 2 2 2 2( ) ( ) 2x c K x x d x c K d x d x′ = ⋅ − ⋅ − ⋅ = ⋅ − ⋅ − ⋅ . 
 

If the parameters satisfy c > d and d K
c c
< <

d
d−

, then 0a c K d= ⋅ − > and aC
d

K= < . This is again a logistic 

equation with limit capacity C for 2x . The sizes of the t wo classes tend to the steady-state ( ). If C > K all 
people become ill. For c < d the disease dies out. 

,C K C−

 
SIR Model 
 
Now, consider that immunisation is possible. Three classes of people are introduced, namely susceptible, infectious and 
resistant individuals with sizes 1 1( )x x t= , 2 2 ( )x x t=  and 3 3( )x x t= . This means: 
 
 1 2 3 1 2 3 1 2 30, 0, 0, , 0x x x x x x K x x x′ ′ ′≥ ≥ ≥ + + = + + = . 
 
The rate of recovery contributes positively to the resistant (and negatively to the infectious) individuals. The equations, 
due originally to Kermack and McKendrick in the 1930s, read: 
 
 1 1 2 2 1 2 2 3 2, , (x c x x x c x x d x x d x c d′ ′ ′ 0, 0)= − ⋅ ⋅ = ⋅ ⋅ − ⋅ = ⋅ > > . (4c) 
 
The first two equations do not contain 3x . They can be treated separately, and fit into the model class of Lotka-Volterra. 
The size 3x  can be easily determined by the third equation. There are two steady-states, namely (0,0) and (σ ,0) where 

d
c

σ =  is the relative rate of recovery. The first is unstable. The second is stable. The phases depending on the initial 

values have the explicit form: 
 
 2 1 10 20 1 1 10 10 20( ) (ln ln ),x f x x x x x x x x Kσ= = + − + ⋅ − + < . 
 
They are concave, having a common maximum 2mx  at 1x σ= and zeros 11x  in (0, )σ  and 12x  in ( , )Kσ . Because of 

, the phases are traversed backwards (from right to left). This has simple consequences. First: part of the people 
will not be infected. Second: there is a threshol d 

1 0x′ <
σ : a) For 10x σ≤  both 1x and 2x  decrease monotonically, the first to 

1zx  and the second to 0. The disease will die out rapidly; b) For 10x σ>  again 1x  decreases monotonically to 1zx , but 

2x  first increases to the maximum 2mx  and decreases only afterwards to 0. The disease will become first an epidemic. 
If the number of susceptible individuals is small enough, the disease has lost power, and will die out after some time. 
Hence, the number σ  is very important. If it is large enough, the danger of epidemic is low. This threshold number can 
be increased by appropriate health care. 
 
Soper Model 
 
The disease, measles, is known for repeated fluctuations with varying power. In the 1930s, Soper introduced the 
following modelling equations: 
 
 . (4d) 1 1 2 2 1 2 2 3 2, , ( 0,x c x x e x c x x d x x d x e c d e′ ′ ′= − ⋅ ⋅ + = ⋅ ⋅ − ⋅ = ⋅ − > > >0, 0)
 
This is an extension of the SIR model. Considering again the first two equations, there is only one steady-state, namely: 
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1 2( , ) ,s s
d ex x
c d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 
An analysis shows that this state is stable . Further, both 1x  and 2x  oscillate in a damped manner around 1sx  and 2sx , 
respectively. This model of measles is not very  realistic. Further attempts to improve the model were also n ot very 
successful. Replacing the constant Soper term e by the variable term 1e x⋅ , the pre dator-prey model (3a) of Lotka-
Volterra arises, where 1x  plays the part of prey and 2x  the part of predator. Here, there is true periodicity. All these 
models are not complex enough to explain certain features of measles. 
 
EXPERIMENTS AND PARAMETER ESTIMATION 
 
Results for the following example of predator-prey Equations (3a) are given in Edwards et al [2: p. 544], where the time 
is in months: 
 
 1 1 2 2 10 200.2 , 0.005; 0.5, 0.01; 70, 40; 0, 50a bx x t tα γ α γ= = = = = = = = . 
 
They can be reproduced using MATLAB. The sc ript file w ith several inputs calls the function file containing the 
differential equations (3a) with special parameter values. Then, it calculates the solution and supplies the phase curve. 
 
% MATLAB function file lotka.m 
function xd = lotka(t,x) % d: time derivative 
xd = zeros(2,1); 
xd = [(0.2 – 0.005*x(2))*x(1); (-0.5 + 0.01*x(1))*x(2)]; % Lotka-Volterra equations 
 
% MATLAB script file lotkasol.m 
ta = 0; tb = 50;              % time interval (in months) 
x10 = 70; x20 = 40;      % initial populations 
[t,x] = ode45('lotka',[ta,tb],[x10,x20],odeset('RelTol',1e-6)); % call of function file and calculation by ode45 
plot(x(:,1),x(:,2)), xlabel('prey'), ylabel('predators')                 % plot of phase curve 
 
The stable steady-state is (50, 40). Population 1 (prey) oscillates between 33 and 72; Population 2 (predators) between 
20 and 70. The time period is slightly over 20 (months). It is not difficult to generalise these files in such a way that all 
models of the paper can be calculated. 
 
To apply the results of the discussed models to real  situations, realistic val ues of the  parameters are re quired. The 
parameters must be estimated on the basis of real data. Using the method of least s quares, minimising the sum of the 
squared residuals between the theoretical results and the given data, parameters can be fitted to the data in an optimal 
way. For the SIR model this is described in Chen et al [1]. 
 
CONCLUSIONS 
 
Students are especially motivated by using mathematical methods to gain new insights into nature and to solve practical 
problems. Therefore, projects are ve ry interesting where processes in natu re are modelled and simulated by 
mathematics. It is im portant to start with s imple models. Following that, a hierarc hy of m odels can be developed, 
depending on the level of the students. 
 
Some features of real situations can be explained rather well, even surprisingly well, by simple models. Moreover, these 
simple models provide hints for reasonable strategies to control the corresponding real systems. Very sophisticated 
models are ne eded to understand a nd to control real sy stems with highe r accuracy. Ofte n, many populations a re 
involved. The growth rates and interactions are more complicated than those discussed here. Such models often put high 
demands on computers and software. Thus, it is an interesting field of research. 
 
The solutions (populations) develop within certain parameter ranges without qualitative changes. But, sometimes, there 
are critical pa rameters where sm all changes lead to  quite different states. I n chaotic systems no prediction of the 
behaviour is possible. Mathem atics is needed. Without good m odelling and without good mathematics nothing is 
possible. Complex models are simulated using computers and up-to-date numerical solution methods. 
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