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MATHEMATICAL BASICS AND GROWTH AS PROJECT WORK 
 
Teachers are confronted with big challenges in mathematical education: 
 
• The importance of mathematics for higher education and the professions is scrutinised. 
• Many students enter the university with low mathematical skills and low motivation for learning more 

mathematics. 
• There are demands from the public to meet the aspirations of students. 
• The new media offer new forms of learning mathematics. 
 
One demand is to teach mathematics in close relation with applications. An interesting opportunity is to explain 
mathematical basics against the background of growth processes. A lot of mathematical growth models are already 
available. New ones can be created. Growth is investigated showing the benefit of mathematics and motivating students 
to learn it. At the same time, aspects of modelling and simulation are included, demonstrating the interplay of different 
disciplines for the solution of actual problems. Problems are solved by algorithms on a computer. 
 
Growth is a general phenomenon. Nevertheless, it seems to be clear that growth is limited to earlier or later. Therefore 
growth is also an emotive word in the political discussion [4]. 
 
One idea of modern teaching is breaking up the classical frontal teaching by using more cooperative forms. Another 
idea is to use modern means, such as computers for computation and exploration [1][6] or the Internet for information 
and teaching material. Occasionally, projects are introduced at the engineering faculty of Wismar University, where 
teams of students work on practically relevant problems, which require a mathematical background, guided by staff 
members. The focus is put on problem solving. Mathematical software, such as MATLAB is used as an additional tool. 
In the past, good experiences were made with such topics as computerised tomography (CT), oscillators in engineering 
or predator-prey models. The level of mathematics can vary on a wide scale and has to fit to the pre-knowledge of 
students. If projects are included in the first year mathematical education, a revision of syllabus might be necessary. 
Another possibility is to offer projects in later semesters as optional courses. Then, integration of engineering subjects 
and cooperation with colleagues from engineering is more fruitful. A new project about growth processes needs only 
mathematical basics and calculus, but it can also be extended to include such subjects as ordinary differential equations, 
numerical mathematics, probability and statistics, as well as computer mathematics [8]. Since all these subjects occur in 
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the first year course of engineering mathematics, at most the order of content has to be changed. Some of the usual 
topics can be cancelled to avoid overloading of the course. 
 
GROWTH FUNCTIONS 
 
A process is described here by a real smooth (sufficiently often differentiable) function ( )x x t= , where 

0[ , [et T t t∈ = denotes the time. Usually, an initial value of the process 0 0( )x t x=  is given. In most cases 0 0t =  and 

et = +∞  is assumed. A function x(t) represents growth if it is monotone increasing. The counterpart of monotone 
increasing functions are monotone decreasing functions x(t). They describe processes of decay, decrease, shrinking or 
reduction. Growth can be bounded, unbounded or even explosive. Typical cases of unbounded growth are polynomial 
and exponential functions as:: 
 
 ( ) ( 1, 0), ( ) 1 ( 0)n tx t t n t x t e t= ≥ ≥ = − ≥ . (1) 
 
Examples of explosive growth are time functions with poles as: 
 

 ( ) (0 1), ( ) tan 0
1 2

tx t t x t t t
t

π = ≤ < = ≤ < −  
. (2) 

 
Typical examples of bounded growth are functions as: 
 

 
2

1
2

1 2( ) ( 0), ( ) ( 0), ( ) tan ( 0)
1

t

t

t ex t t x t t x t t t
t e π

−−
= ≥ = ≥ = ≥

+
, (3) 

 
where the limit lim ( )

t
x t C

→+∞
=  is said to be the capacity of the process. The capacity is 1 in all three examples (3). 

 
Further investigations and classifications can be made using the differential calculus. A growth function x(t) is 
characterised by a positive (non-negative) time derivative (velocity, growth rate) ( ) 0 ( )x t t T′ ≥ ∈ , while 

( ) 0 ( )x t t T′ ≤ ∈  holds for decrease. In the special case ( ) 0 ( )x t t T′ = ∈ , the process x is stationary (constant). It is a 
steady state. The growth is said to be progressive, if the growth rate ( )x t′  is monotone increasing (type 1). Therefore, 
the second derivative (velocity) is positive (non-negative): ( ) 0 ( )x t t T′′ ≥ ∈ . The corresponding curve segment is 
convex. The growth is called digressive for ( ) 0 ( )x t t T′′ ≤ ∈  (type 2). The curve segment is concave. Both features can 
also be mixed. Then, there is a time ut  with ( ) 0ux t′′ =  (turning point at ut , type 3). The type depends also on the time 
interval T. It is possible that x is of type 3 in the range of definition, but of type 2 in a subinterval T ( ut T∉ ). 
 
Example: Who is familiar with stochastics recognises an interesting cross connection: all probability distribution 
functions x(t) vanishing outside T are examples for bounded growth with capacity 1. 
 
DIFFERENTIAL EQUATIONS OF FIRST ORDER 
 
Time processes x(t) can be described mathematically by differential equations. Here only equations of first order: 
 
 ( ) ( , ( )) ( )x t f t x t t T′ = ∈  (4) 
 
are considered, where f is a function of two variables controlling the velocity of change. Generally, there is a whole 
family of solutions, containing an arbitrary constant C. The graphical representation can be supported by drawing a 
direction field [2]. If f is positive for a solution x in the interval T, then, x is monotone increasing and, therefore, a 
growth function on T. Including an initial value 0 0( )x t x= , the solution x is (under some natural assumptions) unique. 
If f does not explicitly depend on the time t, the differential equation is called autonomous. Then, it holds: 
 

 ( ) ( ), ( ) ( )dxx t f x x x t t T
dt

′ = = = ∈ . (5) 
 
This type can be solved by separation of the variables and integration. Then, it is: 
 

 ( )
( )
dxG x t C

f x
= = +∫ , (6) 

 
where G is an antiderivative of the reciprocal of f and C is the constant of integration. Although G generally exists, it 
can be a problem to find it analytically. Assume, e.g. that f is a polynomial. Then, the integrand is a rational function 
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which can be split into partial fractions if the zeros of f are known. But zeros of polynomials have to be determined 
numerically in many cases. Hence, the final solution formula often holds only approximately. 
 
In the following [0, [T = +∞  is supposed. The initial condition 0(0)x x=  determines the constant by 0( )C G x= . If G is 
invertible, the implicit solution formula can be written explicitly: 
 
 1 1

0( ) ( ) ( ( ))x t G t C G t G x− −= + = + . (7) 
 
However, often this will not be the case. Consequently, numerical methods come in to solve differential equations. 
MATLAB is professional software to do so [1][6]. MATLAB supplies not only the approximate solution but also a 
graphical representation. If students are not acquainted with such methods, it is useful to start with elementary methods 
as Euler, Heun or the classical Runge-Kutta method and to compare the accuracy of the corresponding solutions. Such 
simple routines can be written by students themselves. But, if high accuracy is needed, the more sophisticated methods 
of MATLAB should be applied. 
 
STEADY STATES AND STABILITY 
 
Considering the dynamical behaviour of a growth process steady states (equilibriums) are of special interest. Steady 
states sx  occur for vanishing velocity x′ . For the type ( )x f x′ =  these states are zeros of f, that means ( ) 0sf x = . 
Eventually, numerical methods are necessary to determine these zeros at least approximately. Two different kinds of 
steady states are possible: stable ones attracting the process and unstable ones repelling it. For a simple analysis, it is 
sufficient to study the process behaviour locally in a small neighbourhood of the steady state. If sx  is a simple zero of f, 
that is ( ) 0sf x′ ≠ , then it is sufficient to approximate ( )f x  around sx  by using the tangent: 
 
 ( ) ( ) ( ) ( ) ( ) ( )s s s s sx f x f x f x x x f x x x′ ′ ′= ≈ + ⋅ − = ⋅ − . (8) 
 
Then, ( ) 0sf x′ <  (negative slope) means that small changes of x away from sx  lead to a return. Hence, sx  is stable. On 

the other hand, if ( ) 0sf x′ >  (positive slope), then, the process is running away from sx . Hence, sx  is unstable. So, it 
is easy to check the stability of steady states. But, it can happen that ( ) 0sf x′ = . Then, the Taylor expansion of f must be 
considered up to the first non-vanishing higher derivative. For simplicity, let us assume ( ) 0sf x′′ ≠  in this case. Then, 
using quadratic approximation, it holds: 
 

 2 21 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2s s s s s s sx f x f x f x x x f x x x f x x x′ ′ ′′ ′′= ≈ + ⋅ − + ⋅ ⋅ − = ⋅ ⋅ − . (9) 

 
Hence, the sign of x′  is the sign of ( )sf x′′ . The steady state is indefinite. Supposing ( ) 0sf x′′ >  the process is attracting 
for sx x<  and repelling for sx x> . A corresponding result is true for ( ) 0sf x′′ < . The stability depends on the branch of 
function which is picked up by the initial value 0x . 
 
MODELS OF LINEAR TYPE 
 
First, the simple model class: 
 ( ) ( , , 0)x t b x c b c R b′ = ⋅ + ∈ ≠  (10) 
 
with parameters b, c is considered. This is a linear differential equation with constant coefficients. There is 
one steady state, namely 1 /x c b= − . With the notation ( )P x b x c= ⋅ +  it holds 1( ) ( )P x P x b′ ′= = . Hence 1x  is stable 
only for 0b < . The solution of (10) is: 
 

 0( ) b t b tc c cx t C e x e
b b b

⋅ ⋅ = ⋅ − = + ⋅ − 
 

. (11) 

 
First 0b >  is supposed. Then, x represents exponential growth. The classical case results for 0c = . This behaviour is 
typical if growth forces can freely spread out without any restrictions. If a colony of bacteria with size x(t) (number of 
bacteria) is considered, then, it seems reasonable that the growth rate ( )x t′  is proportional to the size. Malthus assumed 
such a model for human earth population and predicted in 1798 a worldwide catastrophe in the near future. This 
forecast turned out to be false. The earth population did not develop according to this model, at least regarding large 
time periods [8]. Now, let be 0b < . Then, the process is bounded, namely 1lim ( )

t
x t x

→+∞
= . If additionally 0c = , then, 

exponential or natural decay occurs. 
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If the model has the form: 
 

 ( ) ( ) 1 ( , 0, , )xx t q K x q K q K b q c q K
K

 ′ = ⋅ − = ⋅ ⋅ − > = − = ⋅ 
 

, (12) 

then, the solution is: 
 ( ) 0 1( ) 1 , lim ( )q t q t

t
x t K e x e x t x K− ⋅ − ⋅

→+∞
= ⋅ − + ⋅ = = . (13) 

 
Here, the growth rate x′  is proportional to the difference K x− . For 00 x K< <  this is a bounded growth process of 
type 2 (digressive, concave). 
 
Examples: Suppose that information is spread by media in a region with K peoples. A simple assumption is that the 
number x(t) of people which have the information at time t fulfils nearly the above model. The same is true for 
saturation processes as learning, compensation processes and diffusion in cells. 
 
SIMPLE MODELS OF NONLINEAR TYPE 
 
Now, the model class: 
 2( ) ( , , , 0)x t a x b x c a b c R a′ = ⋅ + ⋅ + ∈ ≠  (14) 
 
with parameters a, b, c is investigated. With the notations 2( )P x a x b x c= ⋅ + ⋅ +  and 2 4D b a c= − ⋅  the quadratic 
polynomial P(x) has: 
 
1. two different real zeros 1x  and 2x  for 0D > , where 1 2x x<  and 1 2( ) ( ) ( )P x a x x x x= ⋅ − ⋅ − , 
2. a real doubled zero 1x  for 0D = , where 2

1( ) ( )P x a x x= ⋅ − , 
3. no real zero for 0D < . 
 
In case 1, there are two steady states: 
 

 ( ) ( )1 2
1 1,

2 2
x b D x b D

a a
= ⋅ − − = ⋅ − +  (15) 

 
representing the constant solutions 1x x=  and 2x x= . Since the graph of P(x) is a parabola, 1x  is stable and 2x  is 
unstable for 0a > , while 1x  is unstable and 2x  is stable for 0a < . In case 2, there is only one steady state 1 /(2 )x b a= −  
and one constant solution 1x x= . Here, it is 1( ) 0P x′ =  and 1( ) 2P x a′′ =  such that the steady state is indefinite. In case 
3, there is no steady state. By separation of the variables, partial fraction decomposition and integration the following 
solutions are obtained: 
 

 

( )
1 2

1 2 1 2

( )
1 2 2 1

2( ) ( )
2 1

1

1

ln1. ( )
1 1

12. ( )

1 13. ( ) | | tan | |
2 2

a x x t

a x x t a x x t

x C x e x x Cx t x t
C e C e a x x

Cx t x t
a t C a

x t b D D t C
a

⋅ − ⋅

⋅ − ⋅ ⋅ − ⋅

−

 − ⋅ ⋅ −
= = − ≠  − ⋅ − ⋅ ⋅ − 

 = − ≠ − ⋅ +  
  = − + ⋅ ⋅ +    

 (16) 

 
Here, C is the arbitrary integration constant. Putting 0(0)x x= , it holds: 
 

 1 0 0

2 0 1 0

211. , 2. , 3. tan
| |

x x a xC C C
x x x x D
− ⋅

= = =
− −

. (17) 

 
In case 1, the function can be defined everywhere, namely for 0C ≤ . This is true, if 1 0 2x x x< < . Further: 
 

 
1 2

1

1. lim ( ) 0, lim ( ) 0

2. lim ( )

13. lim ( ) | |
2 2

t t

t

t

x t x for a x t x for a

x t x

x t b D
a

π

→+∞ →+∞

→+∞

→+∞

= > = <

=

 = ⋅ − + ⋅ 
 

 (18) 

 
Bounded growth occurs, for example, under the following conditions: 
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 1 0 2 0 11. 0, , 2. 0, , 3. 0a x x x a x x a< < < > < > . (19) 
 
Now, let us consider 0, 0, 0a b c< > = . This is case 1 and leads to the logistic differential equation: 
 

 2 0
1 2

2 0

( ) 1 0, 0, 0, 0, xx bx t b x q x b x b q a x x K C
K q x x

  ′ = ⋅ − ⋅ = ⋅ ⋅ − > = − > = = = > = −   −   
, (20) 

 
where 2x K=  is the capacity. The solutions of (20) are: 
 

 ln( )
1 1

b t

b t b t b t

C K e C K K Cx t K t
C e C e C e b

⋅

⋅ − ⋅ ⋅

⋅ ⋅ ⋅  = = = − ≠ − ⋅ − − − ⋅  
 (21) 

 
or, considering the initial value: 
 

 
( ) ( )

( )
( )

00 0 0

0 0 00 0

1( ) ln
1 1

b t

b tb t b t

K K xx K e x K x Kx t K t
x K x e b xK x e K x e

⋅

− ⋅⋅ ⋅

⋅ −  ⋅ ⋅ ⋅ −
= = = − ≠ + − ⋅+ ⋅ − + ⋅ −  

. (22) 

 
Under the condition 00 x K< <  logistic growth appears. This is the most important type of bounded growth. The 
logistic differential equation, and its solution, were introduced by the Belgian mathematician and demographer Verhulst 
in 1836 to model the development of human population (compare with the prediction of Malthus in 1798 (see earlier 
section). A lot of growth processes with limited capacities can be well approximated by the logistic approach. 
 
Examples: The logistic approach is a simple model for spreading of information in a region with K people by passing it 
on orally starting for instance with 0 1x =  person. This approach is also applied to reproduction of populations with a 
limited environment or competition situation, spreading of diseases, as well as growth of organisms and plants (see 
examples in References [2][9]). 
 
Another interesting assumption is 0, 0, 0a b c> < = . This is again case 1 with the differential equation rewritten as: 
 

 2 0
1 2

2 0

( ) 1 0, 0, 0, 0, xx px t a x p x p x a p b x x K C
K a x x

  ′ = ⋅ − ⋅ = ⋅ ⋅ − > = − > = = = > = −   −   
. (23) 

 
The equation is similar to the logistic one, but with opposite sign of the right-hand side. The solution has the form: 
 

 ln( )
1 1

p t

p t p t p t

C K e C K K Cx t K t
C e C e C e p

− ⋅

− ⋅ ⋅ − ⋅

 ⋅ ⋅ ⋅
= = = − ≠ ⋅ − − − ⋅  

. (24) 

 
For 0x K> , there is a time 0et > , where the denominator vanishes and x tends over all limits. This means explosive 
growth. For 00 x K< <  the solution x tends to zero for increasing time t. Hence, for initial values 0x K≈ , the 
behaviour of the process is unpredictable. Small perturbations can completely change the process. Applied to 
population models the alternatives are doomsday or extinction [2]. 
 
SOME INTERESTING DERIVATES 
 
A simple extension of the logistic model is: 
 

 2( ) 1 , 0, 0, 0x bx t b x q x k b x k b q k K
K q

  ′ = ⋅ − ⋅ − = ⋅ ⋅ − − > ≥ = >   
   

. (25) 

 
The constant k can be interpreted as harvesting of the population x if 0k > . Think of a fish population being caught at 
a constant rate. Another modification of logistic model is given in [9] by: 
 

 2( ) 1 1 1 ( 0, 0 , 0)x m b mx t b x x b x b m b m M x
M x M M

     ′ = ⋅ ⋅ − ⋅ − = − ⋅ + ⋅ − ⋅ − ⋅ > < < ≠     
     

, (26) 

 
where the extra factor in the product considers that some species tend to become extinct if their size falls below a 
certain minimum m. The negative leading coefficient in the quadratic expression shows that it is case 1 of earlier 
sections. The zeros (steady states) are here m and M. Bounded growth occurs for 0m x M< < . The equation: 
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 1( ) 1 , , 0,x bx t b x q x b x b q K
K q

δ
δ δδ+

    ′ = ⋅ − ⋅ = ⋅ ⋅ − > =         
 (27) 

 
is also a generalisation of the logistic model. The classical case arises for 1δ = . There are again two steady states, the 
unstable 1 0x = and the stable 2x K= . Growth with capacity K appears for 00 x K< < . 
 
Example: population size of vertebrates and invertebrates for 1δ >  and 1δ ≤ , respectively. 
 
The logistic model can be extended by subtracting on the right-hand side of the differential equation a rational function 
p(x) reflecting a further concrete influence: 
 

 
2

02 2( ) 1 ( ), ( ) ( , , 0, 0 (0) )x B xx t b x p x p x b A B x x K
K x A

⋅ ′ = ⋅ ⋅ − − = > < = <  + 
. (28) 

 
This equation was used to model outbreak of spruce budworm population x defoliating fires in Canadian forests. The 
additional function p(x) models predation by birds [5]. Here, 0 is an unstable steady state. Depending on the parameters 
there are one or three positive steady states. In the latter case, the steady states characterise in natural order the stable 
refuge, the unstable transit and the stable outbreak equilibrium. A reasonable strategy should be to minimise the 
damage of fir by the spruce budworm that is to prevent the outbreak equilibrium. An important question is to find out 
the relation between practical steps and parameter change. 
 
A further interesting growth model was proposed by Gompertz (1779-1865) [1]: 
 
 ( ) ( ) ( 0, 0)tx t a e x t aα α− ⋅′ = ⋅ ⋅ > > . (29) 
 
This equation is not autonomous. The relative growth rate is a decreasing time function. If x is the size of a population, 
this considers the lower growth potential of members with progressive age. Bounded growth is obtained for 0 0x > . 
 
Examples: growth x of volume of hard tumours in medicine, mass x of fish in water [1]. 
 
DATA FIT 
 
If experimental data ( , )i it x  of a growth process are given, then, they can be approximated by a growth function x=x(t), 
where ( )i ix x t≈  ( 0,1,...,i n= ). If the type of growth is known or estimated, then, often x(t) can be determined in a 
corresponding class of functions characterised by m+1 parameters (including the initial value). Methods are rough 
estimation, interpolation (eventually, by ignoring some data) or approximation (by using an optimisation criterion, e.g. 
least squares). MATLAB can help in difficult cases. 
 
Exercise: The growth of earth population should be fit to different models starting with the year 0t . The growth can be 
assumed to be exponential, super-exponential and logistic, respectively: 
 

 
( )

2 0
0 0

0

( ) , ( ) , ( )
1

b t
b t b t c t

b t

x K ex t x e x t x e x t
K x e

⋅
⋅ ⋅ + ⋅

⋅

⋅ ⋅
= ⋅ = ⋅ =

+ ⋅ −
. (30) 

 
The approaches (30) contain two, three and again three parameters. Hence, at least so many data are needed to get 
enough equations for the unknown parameters. The initial value is determined by the first data value. 
 
If the general solution is not known, then, it is also possible to estimate the parameters in the differential equation from 
the data (for the logistic equation see Reference [2]). 
 
ACTIVITIES AND REACTIONS OF STUDENTS 
 
The topic of growth offers many options for project work in higher education where general questions in society and 
science can be connected with a theoretical background using mathematical basics. A selection of topics is given: 
 
• Political and philosophical questions connected with growth processes. 
• Study of function families representing different qualities of growth. 
• Collection of statistical data concerning real growth processes; data fit in appropriate function families. 
• Modelling of growth processes by differential equations of first order, identifying the meaning of parameters in 

the real context. 
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• Investigating growth processes by application of calculus (properties, type of growth). 
• Calculating steady states of growth processes and their type (analytical and numerical methods). 
• Solving differential equations of first order (analytical and numerical methods). 
• Investigating growth models using different parameters and solution methods, comparing results. 
• Collecting and solving theoretical and practical exercises based on mathematical models of growth processes. 
• Use of MATLAB to produce problem solutions applying graphic, numeric and symbolic means; comparing with 

results obtained by manual calculation or given in the literature. 
 
There are many textbooks containing appropriate material concerning mathematical tools and application oriented 
exercises [1][2][9]. Up to now, the project of growth processes was only tested in an optional course. The reactions of 
students were very positive in general. During the evaluation, the following answers were obtained (translation from 
the German language): 
 
• The project is innovative and increases my motivation to learn mathematics. 
• The project involves interdisciplinary thinking, problem solving, modelling and simulation. Hence, the practical 

solution to problems is learnt. 
• The project stimulates discussion about general problems of society. So, it contributes to the awareness of own 

responsibility. 
• The project is more challenging and activating than classical lecturing. 
• The project supports independent and responsible work as well as cooperation. 
• I can use computer software and resources from the Internet. This extends my knowledge considerably. 
• I like team working with my friends. 
• The project was interesting, but I would prefer projects which are concerned with problems of electrical 

engineering.  
 
The majority of students benefited from the project (> 90%, motivation, knowledge, performance). In addition, staff 
derived some benefit. A lot of additional material was collected by students. 
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