
Volume 16, Number 2, 2014 © WIETE 2014 

Global Journal of Engineering Education 

INTRODUCTION 

Conventional calculus education has emphasised good functions and examples. Students, therefore, are accustomed to 
using familiar skills and manipulating signs rather than focusing on reasoning and verifying mathematical concepts, 
definitions, and theorem conditions. This type of teaching and learning orientation generates misconceptions among 
students and may be explained by the generic extension principle. According to Skemp, a concept, for its formation, 
requires a number of experiences - or examples - that have something in common [1]. 

Generating examples of mathematical objects may be a complicated task for both students and teachers [2], but such 
tasks yield substantial educational potential. In mathematics education, requesting that students generate examples is a 
particularly valuable tool [3]. 

Lakatos argued that the more students practice in creating their own counterexamples, the more likely they are to see 
them as infinite classes of examples rather than as isolated and irrelevant pathological cases [4]. Furthermore, in 
advanced mathematical thinking, the role of counterexamples can be an integral part of problem-solving strategies and 
as a way of mathematical thinking. 

There are at least two important roles that examples play in mathematics education. One is of interest to teachers and 
designers of instructional materials, while the other is of interest to researchers [5]. Peled and Zazlavsky classified 
counterexamples into specific, semi-general and general depending on the extent to which expert mathematicians 
provide an insight on how to construct similar counterexamples or generate an entire counterexample space [6].  

Zazlavsky and Ron indicated that students’ understanding of the role of counterexamples is influenced by their overall 
experiences with examples [7]. Zazkis and Chernoff also suggested that the convincing power of counterexamples 
depends on the extent to which they are in accord with individuals’ example spaces [8]. 

This study is based on the perspective that examples as a research tool that provides a window into a learner’s mind 
[9], and expands the research of Peled and Zaslavsky, and Zaslavsky and Ron [6][7]. Data were collected from 
engineering students to explicate these studies and discuss variations within the classifications. 
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METHODOLOGY 

The participants comprised 112 first-year engineering students at a university of technology in Taiwan who had 
previously completed courses of derivative and definite integrals. The questionnaire contained three false mathematical 
statements, and was designed to assess student ability to generate counterexamples regarding differentiation and 
integration. These mathematical statements required an understanding of, and the ability to, generate basic 
differentiation and integration counterexamples. These statements enabled the students’ performance regarding the 
example generation to be analysed: 

Statement 1: If , then, , . 
Statement 2: If f(x) and g(x) are all differentiable and (a,b), then, , (a,b). 

Statement 3: If f(x) and g(x) are all differentiable and (a,b), then, (a,b). 

The primary data sources were the written responses to the questionnaire and interviews, which were administered to the 
students in their calculus classes after they had completed the course of differentiation and integration. The students 
were asked to determine the validity of the mathematical statements and justify their answers. The results of the 
questionnaire necessitated further investigation into students’ example generation. Semi-structured interviews were 
carried out with 15 engineering students. The interviews were video- and audio-taped and time was allotted for each task 
so that interviewees had enough time to answer all the questions. Students were asked to think aloud, while they were 
solving the tasks so that their responses and strategies could be described, as well as to draw inferences about their 
examples and counterexamples. The examples and counterexamples that the participants generated were gathered as 
data. To facilitate characterising student performance and assessing how the participants responded to the false 
statements, the categories and those listed in Table 1 were extended. The analysis focused on identifying examples and 
counterexamples used by the students to create meanings for the problems and the justifications provided. 

Table 1: Types of responses to the three false mathematical statements. 

The statement P1 P2 P3 
Types of responses (N=112) N(%) N(%) N(%) 
Asserting that the statement is correct 73 (65.2%) 49 (43.7%) 46 (41.1%) 
Left blank, no relevant knowledge 10 (8.9%) 12 (10.7%) 17 (15.2%) 
Used positive examples as demonstrations 2 (1.8%) 10 (8.9%) 5 (4.4%) 
Used examples as demonstrations but did not support it or make 
logical errors 61 (54.5%) 27 (24.1%) 24 (21.5%) 

Asserting that the statement is incorrect 39 (34.8%) 63 (56.3%) 66 (58.9%) 
Left blank, no relevant knowledge 8 (7.1%) 2 (1.8%) 11 (9.8%) 
Narrated a statement that was false instead of providing a 
counterexample to refute it 7 (6.3%) 6 (5.4%) 10 (8.9%) 

Provided a counterexample that failed to refute a false statement 16 (14.3%) 18 (16.1%) 26 (23.2%) 
Correct use of counterexample 8 (7.1%) 37 (33%) 19 (17%) 

RESULTS 

Table 1 shows the distribution of the response types of engineering students, and the results show that the response types 
are related to mathematical statements. For example, most students asserted that Statement 1 was correct and few 
students generated correct counterexamples. 

A substantial number of students generated counterexamples for the differentiation statements, and more students 
generated counterexamples for Statement 2 compared with those for Statement 3. This finding indicated that at least 
41% of students failed to identify that the three mathematical statements were false. This may be because students lack 
conceptual understanding and rely on their intuition, resulting in overgeneralisation. 

Statement 1: If  then ，

Overall, 65% of the participants asserted that Statement 1 was correct and generated examples for verification; however, 
most students generated converse statement examples (e.g. Selina): 

Selina:  Greater integrals yield greater function. Thus, this statement is correct. For example, +1 and 
, f(x) is larger than g(x), with an integral from 0 to 1. The integral of f(x) is 4/3 is also greater than 

the integral of g(x) is 1/3. 

Approximately 21% of students used graphical representations to generate examples or counterexamples, including 
Kevin and John. Although they connected integrals and areas, they either misjudged or did not understand the true 
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relationship between integrals and areas. For instance, John believed that the integral was not related to the area above 
or below x-axis. 

Kevin:  This statement is correct. The integral represents the area. With a greater integral, the area is greater 
(Figure 1a) and this is correct. Here, a greater integral represents that the graph is located higher and, thus, the 
function is greater. 

John:  I think the statement is false. Greater integral does not imply greater function. Integral is the area. Thus, a 
greater integral means a greater area. Take a look of what I have drawn (Figure 1b), the area surrounded by 
f(x), x = a, x = b and x-axis is larger than that of g(x). However, f(x) is smaller than g(x). 

George was one of the few students who successfully generated counterexamples, intuitively judging the statement as 
false; however, he could not determine a counterexample until he noticed (a,b). 

George: The key point is that for all . In this graph (Figure 1c) I drew, the area surrounded by 
f(x), x = a, x = b and x-axis is larger than that of g(x); therefore, the integral of f in [a,b] is greater than the 
integral of g in [a, b]. But, the function value of f in the interval [a, c] is smaller than the function value of g in 
the interval [a, c]. Therefore, the statement is incorrect. 

     a)       b) c) 

Figure 1: Example and counterexamples of Statement 1. 

Statement 2: If f(x) and g(x) are all differentiable and (a,b), then, , (a,b). 

For this statement, 40.2% of the students generated examples or counterexamples for verifying or refuting the statement. 
Most students (e.g. Tanya and Dan) failed to notice the interval and thus failed to generate correct examples or 
counterexamples. 

Tanya:  This should be correct. Given  and +6x+1, . 
When x = 1, f(1) is10, and g(1) is 8, and . Thus, this statement is correct. 

Dan:  If +1 and  x, f(x) is greater than g(x), and , , and  is greater than 
. Thus, this statement is correct. 

Cindy noticed the effects of constants in the differentiation process. 

Cindy:  This statement is false, because constant terms become 0 after differentiation and constant terms influence the 
size of the function. For instance, f(x) = 3x+1, g(x) = 3x-5, f(x) is greater than g(x), but 

Few students (e.g. Tom and Lisa) used graphical representation or the slope of tangent to argue that the mathematical 
statement was false (Figure 2). 

Figure 2: Lisa’s and Tom’s counter-examples of Statement 2. 
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Tom: I think a greater function does not imply a greater derivative. This statement is false. Thus, I would like to 
find an example to prove that larger functions imply higher graphs. The graph of f(x) is above that of g(x). 
The g(x) graph is a straight line with a constant slope. However, the slope of f(x) in the interval of (a,b) is not 
always greater than that of g(x). Therefore, I proved that this statement is false. 

Statement 3: If f(x) and g(x) are all differentiable and (a,b), then (a,b). 

Statement 3 is a converse statement of Statement 2; nevertheless, the students demonstrated an individual performance 
in response to these statements. Only 17% of students successfully generated counterexamples for Statements 2 and 3. 
By contrast, 38.3% of students failed to generate examples or counterexamples, indicating that Statement 3 was more 
challenging compared with Statement 2. 

However, 44.7% of the students neither noticed the interval nor generated correct examples or counterexamples when 
verifying or refuting the statement. For instance, Johnson assumed that  is greater than 

, and ,    and f(x) is greater than g(x). He did not realise that this example did not satisfy the condition 
of the statement and ignored the range of x. In contrast to Johnson, Abbie also said that the statement was true, 
indicating that x was positive (Figure 3a) and used algebraic representation to generate an example. But she neglected 
the meaning of the arbitrary constant c. She assumed that  is greater than , 
for all , and ,  is greater than 0. The 19 students who
successfully generated counterexamples all noticed the effect of (a,b) in the mathematical statement. For instance, 
Anna connected derivatives and the slope of the tangent, using graphical representation to generate counterexample 
(Figure 3b); she also indicated that f(x) is not greater than g(x), for all x in the interval (a,b). 

a)     b) 

Figure 3: Counterexamples of Statement 3. 

CONCLUSIONS 

This study explored how first-year engineering students performed when drawing inferences about false mathematical 
statements. The results showed that compared with integral concepts, the students were more likely to generate 
counterexamples for derivatives. This finding supports the argument of Perkins and Salomon that students’ ability to 
generate counterexamples is highly related to the context [10]. The graphical representations connected with integrals 
and derivatives are the area and the slope of the tangent, respectively. However, the area representation is more complex 
compared with the slope of tangent. This likely explains why few students generated counterexamples in response to 
Statement 1. 

Regarding Statement 1, although using graphical representation is a simple method of generating counterexamples, the 
students preferred using algebraic representation. Thus, visual-image knowledge and simple drawing skills related to 
functions are crucial for students to generate appropriate counterexamples. Finally, the differences in the performance of 
students when processing the three statements showed that the demonstration of flexibility and reversibility of thinking 
is crucial to completely understanding differentiation and integration in calculus [11]. 

To decide whether a mathematical statement is correct or incorrect, students must have a thorough understanding of the 
concept and logical reasoning. In this study, the engineering students demonstrated insufficient understanding of 
differentiation and integral concepts; therefore, they could not generate proper counterexamples to refute the false 
mathematical statements. They failed to check that the conditions were satisfied. This is because they are not fluent in 
using appropriate terms, notations, properties or do not recognise the role of such conditions. To improve the 
understanding of engineering students regarding calculus concepts, teachers must understand students’ misconceptions 
[12] and spend additional time interpreting relevant concepts. Counterexamples can be used for assessment of learners’ 
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understanding in a broad sense. Furthermore, when using counterexamples for teaching and selecting instructional 
examples, it is important to take into account learners’ preconceptions and misconceptions. The counterexamples 
generated by participants (e.g. George, Tom, Anna) could serve as pivotal or bridging examples [8]. The power of these 
examples is also testified by the fact that they tend to be impressed in the memory of students, because of their peculiar 
features, thus, further helping their learning process. 

Because numerous students could not distinguish between examples, which satisfied or did not satisfy the 
counterexample conditions, they failed to generate accurate counterexamples. For instance, the students could not 
comprehend the sufficient and necessary conditions in logical statements, particularly, the if-then statements used in 
calculus concepts. Certain students used the counterexamples for converse statements as the counterexample to refute 
statements, whereas others used examples that satisfied the statements as counterexamples. 

These findings are similar to those of Zaslavsky and Peled, who indicated that student-teachers and mathematics 
teachers used incorrect counterexamples for given statements [2]. In addition, most students neglected the sufficient 
condition (a,b), which was the key to successfully generating counterexamples or examples. Therefore, 
mathematics education must enable students to understand the sufficient and necessary conditions in logical statements 
and familiarise them with using logical language, particularly the if-then statement in calculus. Teaching strategies that 
require generating counterexamples may provide a viable teaching orientation. 
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