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INTRODUCTION 

Studying and processing complex geometric models, using arithmetic analysis codes to obtain their mechanical 
properties, requires a simplification of the model as a first step towards calculations. Despite the existence of powerful 
CAD-geometry processing algorithms, the smooth transition to integrated stress analysis calculations continues to pose 
problems.  

Alongside the widely used finite element method (FEM), the boundary element method (BEM) is also used to analyse 
constructions. Among other things, it offers the advantage of compatibility in describing the required computational 
geometry using the geometrical representation of the object being designed in the computer-aided design (CAD) system. 
Even though BEM analysis offers increased accuracy in many construction calculation problems, particularly in stress 
analysis, there are very few computation codes that have gone beyond research. Although BEM’s direct relationship to 
the CAD geometry offers significant advantages, few steps have been achieved in that direction [1], resulting in minor 
use in industry. 

It has been widely recognised that the accuracy of BEM depends on the way curves or surfaces bounding a domain are 
discretised. Thus, the type of elements used in the mesh, their number and their distribution are critical parameters 
determining the quality of the solution obtained from the analysis. Considering that best results are obtained when the 
boundary elements number is higher in areas where the geometry changes rapidly and areas where the solution is 
expected to show strong variations [2], it is crucial for the boundary to be discrete in such a way (nodes and elements) as 
to produce accurate results. The automated techniques that redefine the mesh are called adaptive meshing. 

The aim of this work is to quantify the difference of standard versus adaptive meshing techniques that both include 
analytical calculated tools, thus reduce calculation error among others. 

METHODOLOGY 

3D CAD systems have various geometric model management philosophies. The object description method selected 
as the basis for this article describes an object using a constructive solid geometry (CSG) type construction history tree, 
where objects are a result of an addition, extrusion, linear and rotational operations sequence, as well as sets of 
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operations (union, cut, intersection) in the form of parametric features (holes, threads and other construction elements). 
Such elements constitute an assembly described in boundary representation (B-rep) format, while curves and parametric 
surfaces are described using non-uniform rational b-splines (NURBS) analytical equations and splines. NURBS 
geometry description provides the advantage of immediate use to generate the computational model for BEM 
calculation. In this way, the methodology being presented can directly cooperate with the geometric cores used by the 
most important solid modellers of today’s CAD systems. 

The first step in creating the computational model is the inverse redesign of the cross-sections along the structure, 
in a way to be usable according to the stress analysis calculation needs. The goal of this is to obtain the maximum 
equivalent stress σv(x,y), as well as its position P(x,y) on the boundary for every cross-section along a 3D beam, 
while the cross section geometry is random, as shown in Figure 1. 

Figure 1: 2D model based on 3D sectioning. 

For this calculation, the von Mises equation of combined fatigue in sidelong bending and torsion will be used. 
The equivalent stress for a point P(x,y) on the boundary of the cross-section is calculated using the Equation (1). 

),(3),(),( 22 yxyxyx tbv τσσ += (1) 

Where σb is bending and τt torsional stress. The bending stress is calculated based on analytical and the torsional on 
numerical (BEM) methods. 

The distribution of torsion strains as a result of applying a torsion torque on the boundary of the cross section, should be 
calculated for all cross sections that are perpendicular to the beam (Figure 2), where they obtain their higher values. 
The distance between two consecutive cross sections can be adaptively calculated based on previous work [14][15]. 

Figure 2: Parallel planes on 3D beam. 

For the purpose of generating the computational model, the use of BEM requires the description of the cross-section 
geometry using a suitable number of nodes on its boundary. To create those nodes, an analysis is performed in the CAD 
system of the cross-section elements. These may be straight line parts, circle arcs, ellipse sections, splines or 
a combination of all of them, obtained from the CAD to get perfect fit of the beam’s section on every plane. 
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For such geometric elements, their topology is analysed determining the starting and ending points of each element and 
are placed in such way to generate a closed cross section. Each CAD geometric element is described by a different 
number of nodes. Every such element (straight line, circle, arc, ellipse, spline, etc) is converted into its NURBS 
representation, inside the CAD system, so a single mathematical function of the closed cross section is used. The nodes 
may be equidistant amongst them, or their geometric position may be determined by a function, as Sauer suggested [13], 
where nodes become denser towards the edges. In this article, the number and position of the nodes that compose the 
mesh, are generated automatically by using two different approaches. The first approach is based on equivalent distance 
between nodes on each CAD element and the second is based on an adaptive procedure. 

Adaptive Meshing 

Every numerical method includes different type of errors, as classified by Zhao and Wang [5].  Since idealisation errors 
are small, discretisation errors are considered to have an important role. Idealisation errors occur due to transformation 
from a geometric model to a mathematical one, and discretisation errors include errors as result of the used polynomial 
interpolation function to describe the boundary. To evaluate the error in a BEM solution, an error indicator must be 
used. Guiggiani was one of the first researchers to propose the use of new error indicators especially designed for BEM, 
instead of using FEM ones [6]. He suggested the use of the difference between two solutions, which are obtained from 
the same element, doubling the number of nodes and elements each time. This difference will determine whether an 
element needs re-meshing or not, and through such iterations the final mesh is formed, becoming finer near areas with 
high error. 

The methodology is based on a posteriori error indicator developed through previous works [6][7][12], but its novelty 
can be examined on three main characteristics. First, the integration of analytical methods within the stress calculations; 
second, the use of Lagrange BEM elements with such an error indicator and, finally, the implementation of the 
methodology within the boundaries of a modern 3D CAD solid modeller. On this point, one must note that none of the 
commercial BEM software has the feature of adaptive meshing or using analytical methods for stress calculations that 
both lead to reduced error, thus increase accuracy. 

IMPLEMENTATION TESTS 

In order to validate our methodology, the authors implemented a program that combined all the above features, within 
the boundaries of a modern CAD system, using its application programming interface (API). 

Rectangular Cross Section Beam 

The first set of tests was held on a rectangular cross-section beam that produced analytical results and the magnitude of 
the exact true error can be calculated. The input used loads are bending (Mbx = -560,000 N·mm and Mby = 280,000 
N·mm) and torsion (Mt = 900,000 N·mm) moments (Figure 3). Figures 4 and 5 show the relevant stress diagrams. 

Figure 3: Moments on rectangular section. 

Table 1: Results of rectangular cross section beam. 

Torsion stress True error 

S/N Point Analytical 
With error 
indicator 

Without 
error 

indicator 

Without error 
indicator 

With error 
indicator 

(N/mm2) (N/mm2) (N/mm2) (%) (%) 
1 P 1.833 1.8315 1.829 0.22 0.082 
2 Q 1.466 1.4650 1.457 0.62 0.071 

Q  
 . 

 . P 
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Figure 4: Diagram of equivalent stress on the boundary of rectangular section beam. 
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Figure 5: Convergence diagram - equivalent stress of rectangular section beam. 

I-profile Cross Section Beam 

Another set of tests was also conducted using an I profile cross section beam (Figure 6), according to DIN 1028-2. 
The input loads used are bending (Mbx = -560,000 N·mm and Mby = 280,000 N·mm) and torsion 
(Mt = 50,000 N·mm) moments. After six iterations, one manages to have every element’s error lowered to less than 1%, 
having the maximum value 13.27 N/mm2 [14]. Figures 7 and 8 show the relevant stress diagrams. 

Figure 6: Moments on I-profile section beam. 
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Figure 7: Diagram of equivalent stress on the boundary of I-profile section beam. 
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Figure 8: Convergence diagram - equivalent stress of I-profile section beam. 

IMPACT ON ENGINEERING AND TECHNOLOGY EDUCATION 

Undergraduate and postgraduate students, engineers and professors of the Mechanical Engineering Department at the 
Piraeus University of Applied Sciences, in collaboration with the Mechanical and Automotive Engineering Department 
of Kingston University, London, contributed to the completion of the presented work. Next step would be to evolve the 
existing methodologies and embed them with corresponding adaptive slicing procedures [15][16] to generate a complete 
initial version of stress calculation integrated tool based on BEM meshing techniques. This would help the students get 
an easy self-explaining visual feeling on how the design of mechanical parts affects its strength due to different loading 
and boundary conditions. 

CONCLUSIONS 

A comparative study of different meshing techniques and quantitative analysis was presented in this work. The objective 
was to explore the magnitude of difference between the presented approaches. The aim was to lower the error on such 
calculations by using analytical methods combined with BEM on one hand, and taking advantage of CAD’s technology 
as much as possible on the other. This work can be further developed by combining it with other slicing procedures [15], 
[16] in order to obtained accurate results along beam’s length or embed quality tools indicator of guiding the meshing 
procedure. 
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