
231

© 2004 UICEEGlobal J. of Engng. Educ., Vol.8, No.2
Published in Australia

INTRODUCTION

When teaching the many diverse concepts in digital
logic theory and circuit design, the author has found it
advantageous to utilise computer-based software for
student teaching and self-paced testing. To this end,
the author has developed a suite of educational soft-
ware modules [1-5]. These are collectively called
WinLogiLab, which currently covers the full teaching
curriculum within the author’s digital electronics
course. This includes the teaching and testing of the
following:

• Boolean algebra;
• Truth tables;
• Logic circuit diagrams;
• Logic minimisation techniques;
• Combinatorial logic circuits;
• Sequential logic circuits;
• Finite state machines.

From the inception of the WinLogiLab tutorial suite,
the software was desired to fill a discovered gap in

Implementing a Software Teaching Module for the
Real-Time Simulation of Digital Logic Circuits*

Charles Hacker
Faculty of Engineering and Information Technology, Griffith University

Parklands Drive, Gold Coast, QLD 4215, Australia

In the article, the author presents the development of a software module called DigitalSim, which
performs the real-time simulation of digital circuits. This DigitalSim module forms an addition to the
author’s developed WinLogiLab software, which is a suite of educational software modules that
provides tutorials and testing in digital electronics. From its inception, the WinLogiLab software
was intended to encompass only digital circuit design, with no plan to cover any real-time simulation
of circuits. This was due to the present utilisation of various external programs that already
adequately perform this simulation. However, feedback from students, as well as lecture needs,
indicated that it would be beneficial to actually include simulation within WinLogiLab.

the available external (commercial and shareware) dig-
ital logic software [1]. The deficiency being in the
absence of currently available software for the
student teaching of how to design digital circuits for
later analysis and testing. There was thus no desire to
replicate existing (commercial or shareware) software.

Consequently, the previously developed
WinLogiLab software modules covered only the
areas of teaching and testing of digital logic circuit
design. The analysis and testing of such designed
circuits was then left to be performed in later
laboratories, or be real-time simulated by the use of
the many existing external digital circuit simulation
software packages. However, continuous feedback
from students, and lecture needs, indicated that
it would indeed be beneficial to include real-time
simulation capabilities within the WinLogiLab software
suite.

Therefore, this article presents the development of
this additional software module, called DigitalSim,
which simulates the real-time operation of digital
circuits.

EXISTING DIGITAL SIMULATION
PACKAGES

As stated, the development of real-time simulation
software was initially considered unnecessary within
the author’s digital electronics course. This was due

*A revised and expanded version of a paper presented
at the 4th Global Congress on Engineering Education,
held in Bangkok, Thailand, from 5 to 9 July 2004. This paper
was accorded a UICEE Director’s Choice award (with
another paper) for excellence in engineering education at
the Conference.

C. Hacker232

to the course already utilising various external
(commercial and shareware) simulation programs,
which quite adequately performed the real-time
simulation of digital circuits [6-9].

Specifically, the simulation applications utilised in
the author’s electronics courses are as follows:

• Electronics Workbench [6];
• WinPSpice [7];
• Logic Works [8];
• Multimedia Logic [9].

The Electronics Workbench and WinPSpice
applications are mainly covered in other analog
electronics courses at Griffith University, Gold Coast,
Australia. Although these applications can perform
digital simulations, and are available in student labora-
tories, they were unsuitable for use in the digital
electronics course. This was due to, firstly, the
complexity of these applications, which necessitated
unwanted extra lecture time in just explaining the user
operation of the software. Also, the licensing agree-
ment disallowed the ability to provide these software
applications to students for their home use.

The application Logic Works was the digital
simulation software originally chosen for use in the
digital electronics course. This was due to the simple
operation of the software, as well as the fact that
students could easily (with low cost) purchase the
software from the University bookshop.

Yet the above Logic Works application was
superseded by the Multimedia Logic application in
the author’s digital electronics courses. The Multi-
media Logic application was chosen because it
offered greater functionality than the other applica-
tions. Another, and possibly more important reason,
was that the application has recently become freeware.
The freeware status meant that both the Multimedia
Logic application, and the author’s WinLogiLab
suite, could be provided to students free-of-charge
(on CD-ROM).

THE REQUIREMENTS FOR THE
DESIGNED MODULE

Although the above mentioned software applications
perform (in most cases) very adequate real-time
simulation, student and lecture needs necessitated the
development of a similar WinLogiLab compatible real-
time simulation software module.

The student course evaluations, plus other student
feedback, continually requested the development of a
WinlogiLab compatible real-time simulation software.
The students indicated, firstly, that they would prefer

to be able to simulate the operation of their
WinLogiLab designed logic circuit within the actual
WinLogiLab suite. This would negate the need to
manually transfer their circuits to an external software
simulation package, which generally required a dupli-
cation of effort in entering the same circuit again into
the external software.

Secondly, students preferred to only be required to
learn one software package. Since the software
modules of the WinLogiLab suite have a consistent
look, feel and operation, it was much easier for
students to utilise a compatible DigitalSim module than
to learn another external simulation application.

Thirdly, students acknowledged that the various
Help Windows and Pop-Up Hints of the WinLogiLab
software modules made the WinLogiLab software
more user-friendly than the external simulation
packages.

Apart from these student requests, the author had
determined a need for developing simulation software
for use during lecture demonstrations. The author
would, where possible, make use of the existing simu-
lation software applications for lecture presentations.
Where the existing simulation software was
inadequate, the author would write small animation
applications to present those concepts not possible from
the existing simulation packages. Thus, the ever-
increasing number of animated applications also
prompted the author to set about developing an actual
real-time simulator that was capable of demonstrating
the required lecture concepts.

IMPLEMENTATION OF NEW CODING
TECHNIQUES

One of the major hindrances to the author in develop-
ing a simulation module was due to the necessity in
developing entirely new coding algorithms. The
coding already developed for the existing WinLogiLab
logic circuit design modules, were not useable, nor
even directly transferable, to algorithms for real-time
simulation.

The main reason for the different coding algorithms
was due to the fact that the existing algorithms (for
the circuit design modules) required no timing or live
update. The existing circuit design modules of
WinLogiLab utilised Boolean algebra, and circuit
minimisation rules, in order to arrive at a set constant
digital logic circuit.

The real-time simulation algorithms required new
coding structures to take into account that the
simulated circuit could be in a constantly changing
state. Similarly, the new simulation algorithms needed
to take into account that there would be a delay

Implementing a Software Teaching... 233

between when a change in the inputs to a particular
logic gate will cause a possible change in output
of that gate (that is, have logic gate propagation
delays).

For example, assume the circuit in Figure 1 is to be
simulated. When the user alters the initial input button
(on the left of this circuit), the simulation will be
required to show the changes in each of the logic gates
rippling through the entire circuit, (from position 1 to
position 4). However, the existing WinLogiLab
coding structures were only programmed to determine
the final (steady state) condition of the circuit, which
did not calculate any intermediate steps.

Figure 1: Example of signals rippling through a circuit.

The dilemma of providing for a continuously chang-
ing circuit, was largely solved by instigating an algorithm
that actually implemented a second in-memory circuit,
which was identical to the displayed circuit. The dis-
played circuit was deemed to be the current state
circuit, and the in-memory circuit was the next state
circuit. Then, with each time period, the in-memory
next state circuit was updated based on the values of
the other current state circuit. At the end of the time
period, the next state circuit was copied to the current
state displayed circuit. This process was thus repeated
for each time step. As such, this enabled a real-time
progressive updating of the displayed circuit.

As mentioned, the underlining algorithm for repre-
senting the constantly altering simulation circuit was
redesigned for this DigitalSim module (compared with
other modules). However, apart from this, all of the ex-
isting WinLogiLab modules coding for graphical inter-
face and user interaction could be essentially reused. This
not only saved time and effort, it also had the advan-
tage of giving the developed DigitalSim module the
same look and feel as the other software modules.

Furthermore, by utilising the same code (for such
things as graphical displays, user interfaces and saved
data files), the DigitalSim module had a consistent
user operation to the other modules. In addition, since
the save data file format was consistent between
modules, the data from other modules could be easily
transferred to the DigitalSim module.

THE DESIGNED SOFTWARE MODULE

The DigitalSim software module provides a visual real-
time simulation of a logic circuit for the user within the
main screen of the program. An example of a running
simulated logic counter circuit is given in Figure 2.

The DigitalSim module allows the user to simu-
late a circuit that has been transferred (either directly
or by loading a saved file) from other WinLogiLab
modules. Yet the software also allows the user to
directly enter their own digital circuit schematic within
the DigitalSim module itself. This is accomplished by
using the toolbar design icons, menu items and the
mouse pointer. These are also shown in Figure 2 along
the top of the main window.

Figure 2: Example of a running simulated binary counter circuit.

C. Hacker234

THE SIMULATION START-UP SCREEN

Once a circuit has been inputted, the start simulation
button will start the real-time running of the circuit.
This button is located on the Start-up Screen, which
constantly floats above the main circuit displaying
screen. An example of the Start-up screen is given in
Figure 3.

Once the simulation has been started, the start
button caption changes to the words stop simulation,
and thus the simulation is stopped by the same button.

The Start-up screen also provides for setting
the simulation speed. The simulation speed allows
for the user selection of the time steps that occur
between updates in the current displayed circuit. The
simulation speed can be continually adjusted during
the running of the simulation, if so desired.

A notable difference between the developed
DigitalSim real-time simulator and other external simu-
lators is that the simulation speed (the time steps) are
set much slower in the author’s DigitalSim module.
More specifically, due to the adjustable simulation
speed, the maximum adjustable speed is set much
slower than other external real-time simulators avail-
able. This simulation speed was purposely reduced
within the DigitalSim software so as to better enable
students to visually see the step-by-step events that
occur within the running circuit.

That is, the other external real-time simulation pack-
ages seem to concentrate on running (simulating) as
fast as possible. This fast simulation may better mimic
the actual fast processing that occurs within actual
digital circuits. However, it is not as educational, for
this fast simulation rate is too quick for a student to
observe, and thus understand, the actual processes
going on in the simulated circuit.

The Start-up screen also allows for setting the
initial state of the simulation, which is the state of the
circuit components before simulation occurs. The
requirement for an initial start-up state is also one of

the biggest differences required in the operation
between this and previous software modules.

That is, the previous WinLogiLab modules were
programmed for design only, and these design-only
algorithms required no initial state setting; this is
because the design of circuits effectively only presents
the steady-state condition.

This lack of an initial condition is also the reason
why the previous design software modules are not
able to handle feedback circuits. In a feedback
circuit, the output of a particular gate is feedback
around the circuit, and eventually cycles back to that
same gates own input. An example of a feedback
circuit is given in Figure 4.

Figure 4: Feedback error in design software modules.

The design-only WinLogiLab modules displays an
error when the modules encounters a feedback
circuit and halts any further processing. This is
demonstrated by the feedback detected error
messages of Figure 4.

The feedback error condition is due to the result
of a chicken and the egg situation. That is, the
output of a gate depends on another gate, which
in turn, depends on the first gate, which depends
on the other gate, which depends on the first gate
again. This cyclic condition would thus continue
ad infinitum.

In an actual real life circuit, the initial states of logic
circuits come up as random (high or low). Although
these states are random, each logic device actually
has a defined (but unknown) current high or low out-
put. Thus, there is always a set (but random) output
on each of the components, even at start-up, in a real
digital circuit.

In order to accomplish this effect in the real-time
simulation, the circuit must be provided an initial state
for the logic circuit components. Once this is known,
the simulation algorithm can then determine the next
state that will occur, at the next timing period, given
the initial current state conditions. The subsequent
current state is then, as mentioned, copied from the
calculated next state circuit.

The initial state of the logic circuit components can
be set by the Start-up screen as either a logic high (1),
or logic low (0), or an unknown random high or low
(X). As stated, the unknown random high or lowFigure 3: Example of the Simulation Start-up Screen.

Implementing a Software Teaching... 235

condition (X) is the more likely event that will occur
from a real electronic circuit.

The unknown state (X), does not actually randomly
assign a logic high or low. Instead, the logic circuit is
assigned the unknown (X) state. This unknown state
could then ripple through the circuit, like a logic high
or low. The unknown state will only be overridden by
a logic high or low, when a known high or low condi-
tion is set by the user (such as by a switch input). An
example of this unknown state is given in the early
traces shown in the timing window shown in Figure 5.
Note that the initial unknown states eventually
become a logic high or low.

Figure 5: Example of the timing window.

SETTING INPUTS AND VIEWING
OUTPUTS

The real-time simulation software module provides for
multiple forms of digital input devices, such as switch
inputs and oscillator inputs. This software module also
provides multiple forms of output devices, such as
output light indicators and hexadecimal output displays.
There can be as many input and output devices as
the user desires (MS Windows memory space
permitting).

During a simulation run, the user can manually
modify the logic state of the input components (such
as the switches). This is achieved by pressing the
buttons available on the input switch component
symbols. An example of an input switch component
is given in the bottom left hand side of the binary
counter circuit exhibited in Figure 2.

In all of the displayed inputs, outputs and logic
devices (such as gates and flip-flops), all logic level
(high/low/unknown) inputs and outputs to the devices
are indicated by simulated (green/red/grey) LED lights.
This is extremely useful for always indicating the state
of all devices within the circuit. These LED lights
continuously display and update while the simulation
is running. This feature was lacking from all other
researched external (commercial or shareware) real-
time logic simulators.

As well as the on-screen simulated LED displays,
a timing trace screen also provides a list of the

current and past logic levels for all the input and
output logic devices. An example of the Timing Trace
Screen is given in Figure 5.

The on-screen logic levels display as coloured LED
lights. However, the timing screen utilises digital square
wave pulses. In this case, a peak in the wave repre-
sents a logic high (1), the base line represents a logic
low (0), and an unknown state (which could be either
a logic high or low) is represented by a crossed
mark (X).

The timing screens logic square waveform display
is similar to the only output display that was available
from the researched external (commercial and
shareware) logic simulation packages. This conven-
tional output format makes the DigitalSim software
module’s output as effective as the external simula-
tion software. However, as stated, the extra on screen
LED displays provides for greater visual status of the
circuit’s operation.

ACCESSING EXTERNAL HARDWARE
DEVICES

A further addition incorporated into the real-time
simulator module was the ability for the software
module to access the actual hardware ports of the
microcomputer. For example, a microcomputer
usually contains parallel printer ports, serial communi-
cations ports and data ports for analog-to-digital or
digital-to-analog converter cards.

From the selection of port module symbols, (as
demonstrated in Figure 6), the real-time simulator
module can input and output digital signals to the
actual physical external hardware port. This enables
the DigitalSim module to directly control external
electronic devices, such as robotic equipment.

An example of the type of external hardware
devices developed by the electronic engineering school
(at Griffith University) is the Bilby robot (shown in
Figure 7). This robot is a two wheeled vehicle that is

Figure 6: Example of the running Bilby robot
controller circuit.

C. Hacker236

powered by stepper motors, which contain various
sensors for track following. The robot is designed to
be attached to the printer port of a microcomputer
and is thus controlled by commands sent to the printer
port by the computer. The robot was initially
developed for use as a hardware control device for
another course on microprocessor assembly language
programming.

However, the robot also happened to be easily
controlled by the DigitalSim real-time simulator
module by utilising Port device components and asso-
ciated simulated circuitry components. An example
of a circuit to control the robot is given in Figure 6.

CONCLUSION

The aim of the described DigitalSim software
module was to develop a user friendly graphical-based
software teaching module that performs real-time
digital logic simulation and that can also integrate
with the author’s WinLogiLab tutorial suite.

This aim has been satisfactorily achieved, in that
the software does indeed perform real-time simula-
tion, which integrates with the author’s WinLogiLab
tutorial suite. Also, the animated, visual and graphical
interface of the MS Windows environment makes for
a user-friendly program.

The WinLogiLab module, which included the
DigitalSim software module, has been successfully
incorporated into the curriculum of the author’s
second year digital electronics course. Student
feedback (via student comments and questionnaires)
indicated the software suite was educationally useful,
beneficial to their studies and that it conveyed the
desired information.

Although this DigitalSim software module performs
similar tasks to existing external software for real-
time digital logic simulation, the existing software is

not compatible to the author’s implementation and
successfully trialed WinLogiLab software suite.

The DigitalSim software was developed and is
utilised for both lecture demonstration and students’
educational use. Students are thus provided the
software, which allows them to make use of this
software privately and at their own leisure.

The full WinLogiLab software has also been made
freely available for educational use to the wider com-
munity. The complete software is available for
download from the Web site of the School of Engi-
neering at Griffith University. The direct URL link to
the WinLogiLab software Web site is:
http://www.gu.edu.au/school/eng/mmt/WinLLab.html

REFERENCES

1. Hacker, C. and Sitte, R., Development of a com-
puter program, to electronically design digital logic
circuits using Boolean algebra. Proc. 9th Annual
Australasian Assoc. for Engng. Educ.
(AaeE97), Victoria, Australia, 353-357 (1997).

2. Hacker, C. and Sitte, R., A computer based
tutorial for demonstrating the solving of digital
electronic circuits. Proc. 10th Annual Australa-
sian Assoc. for Engng. Educ. (AaeE98),
Queensland, Australia, 509-519 (1998).

3. Hacker, C. and Sitte, R., Implementing the
‘Espresso - two level logic minimiser’ algorithm
in the MS-Windows environment. Proc. 2nd Asia-
Pacific Forum on Engng. and Technology Educ.,
Sydney, Australia, 124-127 (1999).

4. Hacker, C. and Sitte, R., A computer based teach-
ing program for the design of digital counter
circuits. Proc. 3rd UICEE Annual Conf. on
Engng. Educ., 225-228 (2000).

5. Hacker, C., Computer-based software for testing
students in digital logic theory and design. World
Trans. on Engng. and Technology Educ., 2, 2,
281-284 (2003).

6. Interactive Image Technologies, Electronics
Workbench 3.0E, Distributed by Applied Electro
Systems Australia (1993), http://www.interactiv.com

7. Orcad/MicroSim Corporation, WinPSpice Design
Laboratory, Mixed Analog Digital Mode Simula-
tor – Version 9 (Student Version) (1999),
http://www.orcad. com, (1999).

8. Capilano Computing Systems, Logic Works
Version 3.0. California: Benjamin Cummings
Publishing Co. (1995).

9. Softronics Incorporated., MMLogic: A
MultiMedia Digital Logic Design System - Ver-
sion 1.2c, (Freeware) (1997),
http://www.softronix.com/logic.html, (1997).

Figure 7: Picture of the Bilby robot.

Implementing a Software Teaching... 237

BIOGRAPHY

Charles Hacker obtained his
electrical engineering and
applied science qualifica-
tions at the University of
Central Queensland (UCQ)
in 1989. Mr Hacker then
started working in the UCQ
Physics Department as
a demonstrator, tutor and
sessional lecturer. In 1991,

he obtained a position as a lecturer in electronics in
the School of Engineering at Griffith University, Gold
Coast, Australia. Mr Hacker went on to complete a
Graduate Diploma in Medical Physics at the Queens-
land University of Technology (QUT) in 1995, and
then completed an MPhil in Electronic Engineering at
Griffith University in 2002.

Mr Hacker’s research is mainly in the area of
engineering education, specifically in developing
computer-based educational software. His teaching
areas include electronics, microprocessors, computer
programming and physics.

C. Hacker238

This form is also available on the Web at
http://www.eng.monash.edu.au/uicee/member/MembershipForm.html

UNESCO INTERNATIONAL CENTRE FOR ENGINEERING EDUCATION
UICEE

MEMBERSHIP FORM - 2005

Yes, I/we would like to become a member of the UICEE. Please register me/us as:

i. Partner (industrial or academic) ($A10,000 p.a.)
ii. Sponsor (A$5,000 p.a.)
iii. Supporter (A$2,000 p.a.)
iv. Contributing Member (A$500 p.a.)
v. Individual Member (A$100 p.a.)
vi Library Subscription (multiple readers) (A$200 p.a.)

(i-iv) Institution /Company Name: ..

(i-v) Individual/Contact Surname: ..

First Name: .. Title: Position:

University/Company Address: ...

..

Country: .. Postcode: ...

Phone (B): ... (H): ..

Fax: .. E-mail: ..

Method of Payment:

 Cheque for $................... made payable to: Monash University - UICEE

 Visa Mastercard Bankcard

Card Number: __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Cardholder s Name: ..

Expiry Date: __ __ / __ __ Signature: ...

 Electronic Funds Transfers (EFT)
BSB 033 289
Bank Account Number 630 759
Name of Bank WESTPAC - Monash University
Address of Bank Melbourne, VIC 3800, Australia

Please fax us a copy of the EFT for our record.

Please copy this form and return to:
UICEE, Building 70, Monash University, Wellington Rd, Melbourne, VIC 3800, Australia

Tel: +61 3 990-54977, Fax: +61 3 990-51547, E-mail: uicee@eng.monash.edu.au

Visit the UICEE Web-site at: http://www.eng.monash.edu.au/uicee/

